AgF AgF2 AlF3 BaF2 BeF2 BiF3 CaF2 CoF2 CrF3 CuF2 FeF2 FeF3
GaF3 HfF4 HgF2 InF3 KF LiF MgF2 MnF2 MnF3 NaF NiF2 PbF2
SbF3 SnF2 SnF4 SrF2 TaF5 TiF4 YF3 ZnF2 ZrF4 LiBF4 Na3AlF6 Basic

XPS Spectra
Fluorine (F) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.


Zirconium Fluoride  (ZrF4)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from ZrF4
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag (3d5/2) FWHM = 1.3 eV

 Periodic Table  → Six (6) BE Tables
Zr (3d) Spectrum from ZrF4 Raw
Fresh exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Zr (3d) Spectrum from ZrF4 Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV


 
Zr (3d) Spectrum from ZrF4 Extended Range
Fresh exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Zr (3d) Spectrum from ZrF4 Raw – Vertically Expanded
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV


 Periodic Table  → Six (6) BE Tables
F (1s) Spectrum from ZrF4 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
F (1s) Spectrum from ZrF4 Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
F (1s) Spectrum from ZrF4 Raw – Extended Range
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
F (1s) Spectrum from ZrF4 Raw – Vertically Expanded
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
C (1s) Spectrum from ZrF4 Not corrected
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 284.82 eV, Ag FWHM = 0.75 eV
C (1s) Spectrum from ZrF4 Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
Zr (4s) Spectrum from ZrF4  Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Zr (4s) Spectrum from ZrF4  Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 

 Periodic Table  → Six (6) BE Tables
Zr (4p) Spectrum from ZrF4 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Zr (4p) Spectrum from ZrF4  Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
K (KLL) Auger Signals from ZrF4 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Valence Band Signals from ZrF4 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 
Overlays
 Periodic Table  → Six (6) BE Tables
Valence Band SpectraOverlay of Zro and ZrF4 
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Zr (3d) SpectraOverlay of Zro and ZrF4 
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV


 Periodic Table  → Six (6) BE Tables
Zr (3d) Spectra – Overlay of Zro, ZrF4 and ZrO2 
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV


End-of-spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)

 



 

Transmission Function Tests


 

December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Sc), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 120, 140, 160, 180 and 200 eV


End-of-Transmission-Function-Tests

 



Six (6) Chemical State Tables of F (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

 Periodic Table 


Table #1

F (1s) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or
NIST Average BE
Largest BE Hydrocarbon C (1s) BE  Source
F 9 F-CuF 684.0 eV 285.0 eV The XPS Library
F 9 F-metals 684.0 eV 687.4 eV 285.0 eV The XPS Library
F 9 F-Li 685.0 eV 685.2 eV 285.0 eV The XPS Library
F 9 F-BeF 685.1 eV 285.0 eV The XPS Library
F 9 F-TiF2 685.4 eV 285.0 eV The XPS Library
F 9 F-CaF 685.6 eV 285.0 eV The XPS Library
F 9 F-MgF 686.6 eV 285.0 eV The XPS Library
F 9 F-CH 686.8 eV 688.0 eV 285.0 eV The XPS Library
F 9 F-AlF2 687.4 eV 285.0 eV The XPS Library
F 9 F-CF2-CH2- 688.4 eV 285.0 eV The XPS Library
F 9 F-CF2-O 689.0 eV 689.2 eV 285.0 eV The XPS Library
F 9 F-CF-CF2 689.3 eV 285.0 eV The XPS Library

 

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale Calibration expects Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

F (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

F (1s) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy F(1s) / eV
Metal fluorides 684-685.5
Organic fluorine 688-689

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

F (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

F (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
F 1s BaF2 684.0 ±0.7 683.3 684.6
F 1s KF 684.1 ±0.3 683.8 684.4
F 1s NaF 684.2 ±0.5 683.7 684.6
F 1s LiF 685.1 ±0.3 684.8 685.3
F 1s MgF2 685.8 ±0.3 685.5 686.0
F 1s Ph3PBF3 685.8 ±0.3 685.5 686.0
F 1s AlF3・3H2O 686.3 ±0.3 686.0 686.5
F 1s Na2SiF6 686.4 ±0.2 686.2 686.6
F 1s EtNH2BF3 686.6 ±0.3 686.3 686.8
F 1s NaBF4 687.0 ±0.3 686.7 687.3
F 1s p-(CF2=CF2) 688.9 ±0.3 688.6 689.2

 Periodic Table 



 

Histograms of NIST BEs for F (1s) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  684.1 eV for F- in MF based on 20 literature BEs Histogram indicates:  684.8 eV for F- in MF2 based on 40 literature BEs

Histogram indicates:  685.3 eV for F- in MF3 based on 16 literature BEs

Table #6


NIST Database of F (1s) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
F 1s CsF 682.40  Click
F 1s AgF 682.70  Click
F 1s KF 682.78  Click
F 1s AgF 682.80  Click
F 1s AgF 682.80  Click
F 1s RbF 682.90  Click
F 1s Na2SbF5 683.40  Click
F 1s PbF2 683.60  Click
F 1s CsSbF4 683.60  Click
F 1s RbF 683.60  Click
F 1s BaF2 683.70  Click
F 1s PbF2 683.70  Click
F 1s NaF 683.70  Click
F 1s BaF2 683.73  Click
F 1s KF 683.80  Click
F 1s K2SbF5 683.90  Click
F 1s KF 683.90  Click
F 1s K3FeF6 684.00  Click
F 1s BaF2 684.20  Click
F 1s CdF2 684.20  Click
F 1s SrF2 684.22  Click
F 1s SrF2 684.22  Click
F 1s NaF 684.27  Click
F 1s BaF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s K3ZrF7 684.30  Click
F 1s KSb2F7 684.30  Click
F 1s CdF2 684.40  Click
F 1s KF 684.40  Click
F 1s NiF2 684.50  Click
F 1s SrF2 684.50  Click
F 1s SrF2 684.50  Click
F 1s ZnF2 684.50  Click
F 1s LaF3 684.50  Click
F 1s NaF 684.50  Click
F 1s NaF 684.50  Click
F 1s NaF 684.50  Click
F 1s CdF2 684.60  Click
F 1s PrF3 684.60  Click
F 1s SmF3 684.60  Click
F 1s K2ZrF6 684.60  Click
F 1s K2ZrF6 684.60  Click
F 1s Ca10(PO4)6F2 684.60  Click
F 1s UO2F2 684.60  Click
F 1s CaF2 684.63  Click
F 1s [N(C2H5)4][SbF6] 684.70  Click
F 1s CrF2 684.70  Click
F 1s CuF2 684.70  Click
F 1s CuF2 684.70  Click
F 1s UF4 684.70  Click
F 1s K2UF6 684.70  Click
F 1s NiF2.4H2O 684.70  Click
F 1s Cs2[WF4O2] 684.70  Click
F 1s Cs2[MoF4O2] 684.70  Click
F 1s GdF3 684.77  Click
F 1s LiF 684.79  Click
F 1s CaF2 684.80  Click
F 1s CaF2 684.80  Click
F 1s CdF2 684.80  Click
F 1s CuF2 684.80  Click
F 1s CuF2 684.80  Click
F 1s MnF2 684.80  Click
F 1s SnF2 684.80  Click
F 1s SrF2 684.80  Click
F 1s SrF2 684.80  Click
F 1s ZnF2 684.80  Click
F 1s NdF3 684.80  Click
F 1s UF4 684.80  Click
F 1s UF4 684.80  Click
F 1s UF5 684.80  Click
F 1s KZrF5.H2O 684.80  Click
F 1s CaF2 684.90  Click
F 1s CdF2 684.90  Click
F 1s FeF2 684.90  Click
F 1s ThF4 684.90  Click
F 1s K2TiF6 684.90  Click
F 1s SrF2 684.90  Click
F 1s MnF2 685.00  Click
F 1s NiF2 685.00  Click
F 1s SrF2 685.00  Click
F 1s SrF2 685.00  Click
F 1s FeF3 685.00  Click
F 1s GdF3 685.00  Click
F 1s K2TiF6 685.00  Click
F 1s Na2ZrF6 685.00  Click
F 1s LiF 685.00  Click
F 1s LiF 685.00  Click
F 1s PrOF 685.00  Click
F 1s Si0.284Zr0.031O0.657F0.028 685.00  Click
F 1s NiF2 685.10  Click
F 1s ZnF2 685.10  Click
F 1s CrF3 685.10  Click
F 1s CrF3 685.10  Click
F 1s ZrF4 685.10  Click
F 1s ZrF4 685.10  Click
F 1s NaSbF6 685.10  Click
F 1s K2TaF7 685.10  Click
F 1s K2SnF6.H2O 685.10  Click
F 1s LiF 685.10  Click
F 1s NdOF 685.10  Click
F 1s Na2BeF4 685.20  Click
F 1s InF3 685.20  Click
F 1s SnF4 685.20  Click
F 1s K2GeF6 685.20  Click
F 1s NaTaF6 685.20  Click
F 1s K2NbF7 685.20  Click
F 1s K2TaF7 685.20  Click
F 1s GaF3.3H2O 685.20  Click
F 1s LaOF 685.20  Click
F 1s Zr0.332O0.639F0.021 685.20  Click
F 1s Si0.322Zr0.005O0.655F0.019 685.20  Click
F 1s LaF3 685.30  Click
F 1s NaSnF3 685.30  Click
F 1s UF3 685.30  Click
F 1s YF3 685.30  Click
F 1s Na2TiF6 685.30  Click
F 1s GaF3.3H2O 685.30  Click
F 1s InF3.3H2O 685.30  Click
F 1s InF3.3H2O 685.30  Click
F 1s EuOF 685.30  Click
F 1s Si0.316Zr0.013O0.664F0.008 685.30  Click
F 1s Si0.057Zr0.269O0.597F0.078 685.30  Click
F 1s MgF2 685.40  Click
F 1s CrF3 685.40  Click
F 1s CrF3 685.40  Click
F 1s HfF4 685.40  Click
F 1s UF4 685.40  Click
F 1s K2NbF7 685.40  Click
F 1s Si0.284Zr0.042O0.656F0.017 685.40  Click
F 1s Si0.255Zr0.061O0.675F0.008 685.40  Click
F 1s Si0.294Zr0.029O0.670F0.006 685.40  Click
F 1s Si0.255Zr0.072O0.665F0.008 685.40  Click
F 1s CrF3 685.50  Click
F 1s CrF3 685.50  Click
F 1s Na3AlF6 685.50  Click
F 1s Na3TaF8 685.50  Click
F 1s YOF 685.50  Click
F 1s Zr0.339O0.555F0.106 685.50  Click
F 1s Si0.251Zr0.074O0.651F0.025 685.50  Click
F 1s Si0.314Zr0.012O0.655F0.019 685.50  Click
F 1s MgF2 685.52  Click
F 1s C5H5N.BF3 685.60  Click
F 1s CrF3 685.60  Click
F 1s CrF3 685.60  Click
F 1s Na2TaF7 685.60  Click
F 1s [Pt2(NCCH3)6].(BF4)2 685.60  Click
F 1s UO2F2 685.60  Click
F 1s Si0.277Zr0.043O0.642F0.038 685.60  Click
F 1s MgF2 685.70  Click
F 1s NaBeF3 685.70  Click
F 1s K3RhF6 685.70  Click
F 1s [(P(C6H5)3)].BF3 685.70  Click
F 1s Si0.300Zr0.028O0.640F0.032 685.70  Click
F 1s MgF2 685.75  Click
F 1s BeF2 685.80  Click
F 1s [BF3(PO(C6H5)3)] 685.80  Click
F 1s BeF2 685.90  Click
F 1s CuF2 685.90  Click
F 1s CuF2 685.90  Click
F 1s ZrF4 685.90  Click
F 1s ZrF4 685.90  Click
F 1s Na2GeF6 685.90  Click
F 1s CsF 685.90  Click
F 1s (CH3C5H3NCH3).BF3 685.90  Click
F 1s LiF 685.90  Click
F 1s [IrCl(CO)(C2F4)(P(C6H5)3)2] 686.00  Click
F 1s HgF2 686.00  Click
F 1s Na2SiF6 686.00  Click
F 1s [Pt(C2F4)(P(C6H5)3)2] 686.10  Click
F 1s MnF2 686.10  Click
F 1s [Cu(NH2CSNH2)3].BF4 686.20  Click
F 1s AlF3.3H2O 686.30  Click
F 1s AlF3.3H2O 686.30  Click
F 1s Na2SiF6 686.40  Click
F 1s [PF(OC2H5)2] 686.40  Click
F 1s [RuCl(NO)2(P(C6H5)3)2].BF4 686.40  Click
F 1s KMgF3 686.50  Click
F 1s LiF 686.50  Click
F 1s KSbF6 686.60  Click
F 1s K2SiF6 686.60  Click
F 1s (NH3).BF3 686.60  Click
F 1s (C2H5NH2).BF3 686.60  Click
F 1s YbF3 686.70  Click
F 1s [RuCl(CH3C6H4NN)2(P(C6H5)3)2].BF4 686.70  Click
F 1s Si0.284Zr0.031O0.657F0.028 686.80  Click
F 1s [RhCl(C2F4)(P(C6H5)3)2] 686.90  Click
F 1s (-CHFCH2-)n 686.94  Click
F 1s CH3CN.BF3 687.00  Click
F 1s NaBF4 687.00  Click
F 1s (-CH2CHCl-)1.5n(-CClFCF2-)n 687.00  Click
F 1s AlF2.3(OH)0.7.H2O 687.00  Click
F 1s Cl,F in (ONO2)CHC(CH2ONO2)2CH(ONO2) 687.10  Click
F 1s (-CH2CHCl-)1.5n(-CClFCF2-)n 687.20  Click
F 1s [OP(C6H4F)3] 687.30  Click
F 1s [P(C6H4F)3] 687.40  Click
F 1s Cl,F in (ONO2)CHC(CH2ONO2)2CH(ONO2) 687.40  Click
F 1s Cl,F in (ONO2)CHC(CH2ONO2)2CH(ONO2) 687.40  Click
F 1s Si0.255Zr0.072O0.665F0.008 687.40  Click
F 1s AlF3 687.50  Click
F 1s Si0.284Zr0.042O0.656F0.017 687.50  Click
F 1s Si0.294Zr0.029O0.670F0.006 687.50  Click
F 1s Si0.251Zr0.074O0.651F0.025 687.50  Click
F 1s Si0.277Zr0.043O0.642F0.038 687.50  Click
F 1s Si0.314Zr0.012O0.655F0.019 687.50  Click
F 1s Si0.322Zr0.005O0.655F0.019 687.50  Click
F 1s K2NiF6 687.60  Click
F 1s Si0.300Zr0.028O0.640F0.032 687.60  Click
F 1s [Au9(P(C6H5)3)8](PF6)3 687.65  Click
F 1s -NHC(O)NHC(O)C(F)CH- 687.70  Click
F 1s Si0.334O0.649F0.017 687.70  Click
F 1s Si0.316Zr0.013O0.664F0.008 687.70  Click
F 1s Si0.255Zr0.061O0.675F0.008 687.70  Click
F 1s Si0.328Zr0.001O0.665F0.007 687.70  Click
F 1s AlF3 687.80  Click
F 1s AlF3 687.80  Click
F 1s Si0.334O0.661F0.005 687.80  Click
F 1s Si0.057Zr0.269O0.597F0.078 687.90  Click
F 1s [Au8(P(C6H5)3)8](PF6)2 687.95  Click
F 1s (-CF2CH2-)n 688.15  Click
F 1s (-CH2-CF2-)n 688.15  Click
F 1s (-CH2CH(OC(O)CF3)-)n 688.16  Click
F 1s SF6 688.20  Click
F 1s (-CH2CH(C(O)OCH2CF3)-)n 688.20  Click
F 1s [Ni(CF3COO)2] 688.40  Click
F 1s (-CH2CH(C(O)OCH2(CF2)4CF(CF3)CF3)-CH2CH(C(O)OCH2(CF2)7F)-)n 688.50  Click
F 1s (-CF(CF3)CF2-)x(-CF2CH2-)y 688.80  Click
F 1s (-CH2C(CH3)(C(O)OCH2(CF2)4CF(CF3)CF3)-CH2C(CH3)(C(O)OCH2(CF2)7F)-)n 688.80  Click
F 1s (-CH2CH(C(O)OCH2CH2(CF2)mCF3-)n 688.80  Click
F 1s CF2 689.00  Click
F 1s CF3[(-OCF(CF3)C-F2)n(-OC-F2)m]xOCF3 689.08  Click
F 1s (-CHFCHF-)n 689.10  Click
F 1s (-CHFCH2-)n 689.10  Click
F 1s SF6/O2/Ni 689.20  Click
F 1s (-CF2CH2-)n 689.40  Click
F 1s (-CH2-CF2-)n 689.40  Click
F 1s (-CF2-CF2-)n 689.40  Click
F 1s (-CF2CF2-)n 689.40  Click
F 1s SF6/O2/Ni 689.40  Click
F 1s SF6/Ni 689.40  Click
F 1s [W(CO)2(C5H5)(F3CC6H4C(N)C6H4CF3)] 689.50  Click
F 1s C6H5F 689.60  Click
F 1s C6H5F 689.60  Click
F 1s SF6/Ni 689.65  Click
F 1s (-CF2-CF2-)n 689.67  Click
F 1s (-CF2CF2-)n 689.67  Click
F 1s C6H4F2 689.80  Click
F 1s Xe/teflon 689.90  Click
F 1s C2HF3 689.90  Click
F 1s (-CF2-CF2-)n 690.00  Click
F 1s (-CF2CF2-)n 690.00  Click
F 1s SF6/O2/Ni 690.00  Click
F 1s (-CF2-CF2-)n 690.10  Click
F 1s (-CF2CF2-)n 690.10  Click
F 1s SF6/Ni 690.25  Click
F 1s (-CF2-CF2-)n 690.30  Click
F 1s (-CF2CF2-)n 690.30  Click
F 1s C6HF5 690.70  Click
F 1s C6H5CF3 690.80  Click
F 1s C6F6 690.90  Click
F 1s SF6 692.70  Click
F 1s SF6 693.50  Click
F 1s [NF4][BF4] 694.20  Click
F 1s [PF2N]5 694.54  Click

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 



Six (6) Chemical State Tables of Zr (3d5/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (3d5/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Zr (3d5/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest NIST BE Hydrocarbon C (1s) BE Source
Zr 40 Zr – element 178.9 eV 285.0 eV The XPS Library
Zr 40 Zr-C 179.2 eV 285.0 eV The XPS Library
Zr 40 Zr-N 179.2 eV 285.0 eV The XPS Library
Zr 40 Ni91Zr9 (N*2) 179.5 eV 182.0 eV 285.0 eV The XPS Library
Zr 40 Zr-C (N*1) 179.6 eV 284.8 eV Avg BE – NIST
Zr 40 CoTaZr 179.7 eV 285.0 eV The XPS Library
Zr 40 Zr-N (N*2) 179.9 eV 180.9 eV 284.8 eV Avg BE – NIST
Zr 40 ZrO2 (N*7) 182.2 eV 183.3 eV 284.8 eV Avg BE – NIST
Zr 40 Zr-O2 182.6 eV 183.3 eV 285.0 eV The XPS Library
Zr 40 Zr(SO4)2 (N*1) 184 eV 185.3 eV 284.8 eV Avg BE – NIST
Zr 40 Zr-F4 (N*2) 185.1 eV 284.8 eV Avg BE – NIST
Zr 40 Zr-(OH)4 285.0 eV The XPS Library
Zr 40 Zr2CO3 285.0 eV The XPS Library
Zr 40 Zr-Cl4 285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (3d5/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Zr (3d5/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Zr (3d5/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV),
Zr (3d5/2)
Zr metal 178.9
Zr sub-oxides 179-180.5
ZrO 182.3
Zr (IV) silicate2 182.7

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Zr (3d5/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Zr (3d5/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Zr 3d5/2 Zr 178.8 ±0.1 178.7 178.9
Zr 3d5/2 ZrO2 182.3 ±0.3 182.0 182.5
Zr 3d5/2 K3ZrF7 183.8 ±0.3 183.5 184.0
Zr 3d5/2 K2ZrF6 184.3 ±0.3 184.0 184.5
Zr 3d5/2 KZrF5・H2O 184.8 ±0.3 184.5 185.0
Zr 3d5/2 ZrF5 185.3 ±0.3 185.0 185.5

 

 Periodic Table 



 


Histograms of NIST BEs for Zr (3d
5/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  178.9 eV for Zro based on 16 literature BEs Histogram indicates:  182.6 eV for ZrO2 based on 11 literature BEs

Table #6


NIST Database of Zr (3d5/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Element Spectral Line Formula Energy (eV) Reference
Zr 3d5/2 Zr 178.29  Click
Zr 3d5/2 Zr 178.29  Click
Zr 3d5/2 Zr 178.30  Click
Zr 3d5/2 Zr 178.30  Click
Zr 3d5/2 Zr 178.52  Click
Zr 3d5/2 Zr 178.52  Click
Zr 3d5/2 Fe91Zr9 178.62  Click
Zr 3d5/2 Fe90Zr10 178.67  Click
Zr 3d5/2 Zr 178.70  Click
Zr 3d5/2 Zr 178.70  Click
Zr 3d5/2 Zr 178.75  Click
Zr 3d5/2 Zr 178.75  Click
Zr 3d5/2 Zr 178.79  Click
Zr 3d5/2 Zr 178.79  Click
Zr 3d5/2 ZrH2 178.80  Click
Zr 3d5/2 Zr 178.80  Click
Zr 3d5/2 Zr 178.80  Click
Zr 3d5/2 Ni25Zr75 178.80  Click
Zr 3d5/2 Co50Zr50 178.80  Click
Zr 3d5/2 O2/Zr 178.80  Click
Zr 3d5/2 Zr/Si 178.80  Click
Zr 3d5/2 Zr/Ta 178.80  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Co50Zr50Ox 178.90  Click
Zr 3d5/2 Zr/SiO2/Si 178.90  Click
Zr 3d5/2 Zr63.8Ni36.8 178.98  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 AlNiZr 179.00  Click
Zr 3d5/2 O2/AlNiZr 179.00  Click
Zr 3d5/2 Fe24Zr76 179.00  Click
Zr 3d5/2 Fe24Zr76 179.00  Click
Zr 3d5/2 Zr/SiO2/Si 179.00  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 179.00  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 179.00  Click
Zr 3d5/2 ZrC0.92 179.05  Click
Zr 3d5/2 Zr 179.08  Click
Zr 3d5/2 Zr 179.08  Click
Zr 3d5/2 Zr/Si 179.10  Click
Zr 3d5/2 ZrCl 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 179.20  Click
Zr 3d5/2 O2/Fe24Zr76 179.20  Click
Zr 3d5/2 ZrBr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 179.30  Click
Zr 3d5/2 ZrBrH 179.40  Click
Zr 3d5/2 ZrClH 179.40  Click
Zr 3d5/2 Ni25Zr75Hx 179.40  Click
Zr 3d5/2 Ni64Zr36 179.40  Click
Zr 3d5/2 Ni64Zr36 179.40  Click
Zr 3d5/2 Zr1.02Si0.96Te1.02 179.40  Click
Zr 3d5/2 Fe91Zr9 179.48  Click
Zr 3d5/2 Ni91Zr9 179.50  Click
Zr 3d5/2 LaCu0.5Zr0.5Ox 179.50  Click
Zr 3d5/2 Fe90Zr10 179.51  Click
Zr 3d5/2 ZrC 179.60  Click
Zr 3d5/2 ZrHx 179.60  Click
Zr 3d5/2 ZrHx 179.60  Click
Zr 3d5/2 ZrBr 179.80  Click
Zr 3d5/2 ZrN0.68 179.90  Click
Zr 3d5/2 ZrN0.13 180.00  Click
Zr 3d5/2 LaCu0.7Zr0.3Ox 180.70  Click
Zr 3d5/2 ZrN 180.90  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 180.90  Click
Zr 3d5/2 O2/Fe24Zr76 180.90  Click
Zr 3d5/2 LaCu0.3Zr0.7Ox 180.90  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 181.30  Click
Zr 3d5/2 (((CH3)3Si)3C5H2)2ZrCl2 181.40  Click
Zr 3d5/2 Zr0.85Ti1.15O4 181.40  Click
Zr 3d5/2 LaZrOx 181.40  Click
Zr 3d5/2 ZrO2 181.50  Click
Zr 3d5/2 Zr1.09Ti0.91O4 181.50  Click
Zr 3d5/2 (((CH3)3Si)2C5H3)2ZrCl2 181.60  Click
Zr 3d5/2 BaZr0.5Ti0.5O3 181.60  Click
Zr 3d5/2 ((CH3)3SiC5H4)2ZrCl2 181.70  Click
Zr 3d5/2 Zr1.09Ti0.91O4 181.70  Click
Zr 3d5/2 Y0.16ZrOx 181.80  Click
Zr 3d5/2 Y0.16ZrOx 181.90  Click
Zr 3d5/2 Zr0.85Ti1.15O4 181.90  Click
Zr 3d5/2 ZrO2/NiO 181.90  Click
Zr 3d5/2 ((C5H5)2ZrCl)2O 181.90  Click
Zr 3d5/2 ZrO2 182.00  Click
Zr 3d5/2 Ni91Zr9 182.00  Click
Zr 3d5/2 Co50Zr50Ox 182.00  Click
Zr 3d5/2 ZrTiO4 182.00  Click
Zr 3d5/2 ZrTiO4 182.00  Click
Zr 3d5/2 ZrO2 182.10  Click
Zr 3d5/2 Zr[Al1.0O0.3(OH)0.8F1.0(H2O)0.7](C3H9N)1.3H0.3(PO4)2.2.3H2O 182.10  Click
Zr 3d5/2 Zr[Al2.0O0.6(OH)1.4F2.3(H2O)1.4](C3H9N)0.7H0.5PO4)2.2.0H2O 182.10  Click
Zr 3d5/2 Zr[Al3.4O1.1(OH)1.5F4.9(H2O)2.5](C3H9N)0.3H0.3PO4)2.2.9H2O 182.10  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.30  Click
Zr 3d5/2 ZrO2 182.30  Click
Zr 3d5/2 ZrO2 182.30  Click
Zr 3d5/2 (Fe0.9V0.1)2Zr 182.30  Click
Zr 3d5/2 O2/V2Zr 182.30  Click
Zr 3d5/2 Zr[Cr2.53Fe5.61(CH3COO)1.17(OH)21.25](PO4)2.8.7H2O 182.30  Click
Zr 3d5/2 Zr[Cr1.32Fe5.58(CH3COO)0.64(OH)18.06](PO4)2.6.5H2O 182.30  Click
Zr 3d5/2 ZrO2 182.40  Click
Zr 3d5/2 (Y2O3)10(ZrO2)90 182.40  Click
Zr 3d5/2 ((ZrF4)53(BaF2)20(LaF3)4(AlF3)3(NaF)20)Ox 182.40  Click
Zr 3d5/2 Zr[Cr3.46Fe3.56(CH3COO)1.53(OH)17.53](PO4)2.11.2H2O 182.40  Click
Zr 3d5/2 Zr[Cr3.33Fe1.38(CH3COO)1.47(OH)10.61](PO4)2.6.9H2O 182.40  Click
Zr 3d5/2 Zr[Cr3.21Fe1.90(CH3COO)1.39(OH)11.94](PO4)2.5.2H2O 182.40  Click
Zr 3d5/2 Zr[Cr1.97Fe2.56(CH3COO)0.85(OH)10.74](PO4)2.3.9H2O 182.40  Click
Zr 3d5/2 Zr[Cr0.61Fe5.64(CH3COO)0.38(OH)16.37](PO4)2.4.9H2O 182.40  Click
Zr 3d5/2 Zr[Cr2.70Fe0.60(CH3COO)1.27(OH)6.63](PO4)2.6.4H2O 182.40  Click
Zr 3d5/2 ZrO2/Ni 182.45  Click
Zr 3d5/2 O2/AlNiZr 182.50  Click
Zr 3d5/2 (-Zr(OCH2CH2CH3)x(C4H9C(O)O)y(O-)z)n 182.50  Click
Zr 3d5/2 Zr0.332O0.639F0.021 182.50  Click
Zr 3d5/2 Zr[Cr3.53Fe1.10(CH3COO)1.47(OH)10.42](PO4)2.5.4H2O 182.50  Click
Zr 3d5/2 (Y2O3)6(ZrO2)94 182.50  Click
Zr 3d5/2 ZrO2 182.52  Click
Zr 3d5/2 AlNiZrOx 182.60  Click
Zr 3d5/2 ZrO2/Ni 182.60  Click
Zr 3d5/2 Zr(HPO4)2.H2O 182.70  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C10H8N2)0.25.1.5H2O 182.70  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C14H12N2)0.5.2.5H2O 182.70  Click
Zr 3d5/2 alpha-Zr(HPO4)2.H2O 182.70  Click
Zr 3d5/2 O2/Mn2Zr 182.70  Click
Zr 3d5/2 ZrH1.56[Co0.22(C12H8N2)0.5](PO4)2.3H2O 182.70  Click
Zr 3d5/2 Zr(HPO4)2.H2O 182.70  Click
Zr 3d5/2 Si0.057Zr0.269O0.597F0.078 182.70  Click
Zr 3d5/2 ZrO2/Zr 182.75  Click
Zr 3d5/2 (Zr(HPO4)2)2(C5H3NC2H2C5H3N) 182.80  Click
Zr 3d5/2 (Zr(HPO4)2)2(C5H3NC2H2C5H3N).2H2O 182.80  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C14H12N2)0.5 182.80  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C12H8N2)0.5 182.80  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C12H8N2)0.5.2H2O 182.80  Click
Zr 3d5/2 ZrO0.15H2.25Na0.08[(AlO2)2.63(SiO2)93.37] 182.80  Click
Zr 3d5/2 Zr0.339O0.555F0.106 182.80  Click
Zr 3d5/2 [Zr(OH)2(CH3CH(NH2)COO)2]Br2.3H2O 182.90  Click
Zr 3d5/2 ZrO2 182.90  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C10H8N2)0.25 182.90  Click
Zr 3d5/2 Ni64Zr36 182.90  Click
Zr 3d5/2 CuZr2(PO4)3 182.90  Click
Zr 3d5/2 Zr(HPO4)2(C12H8N2)0.5.2H2O 182.90  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 182.90  Click
Zr 3d5/2 [Zr(OH)2(CH3CH(NH2)COO)2]Cl2.3H2O 183.00  Click
Zr 3d5/2 ZrO2 183.00  Click
Zr 3d5/2 ZrH[Cu0.5(C12H8N2)0.5](PO4)2.3H2O 183.00  Click
Zr 3d5/2 Zr(HPO4)2(C12H8N2)0.5.3H2O 183.00  Click
Zr 3d5/2 ZrOCl2 183.00  Click
Zr 3d5/2 ZrO2 183.10  Click
Zr 3d5/2 O2/Mn2Zr 183.10  Click
Zr 3d5/2 O2/Fe24Zr76 183.10  Click
Zr 3d5/2 ZrH[Cu(C12H8N2)]0.5(PO4)2.3H2O 183.10  Click
Zr 3d5/2 ZrHCu0.5(PO4)2.4H2O 183.10  Click
Zr 3d5/2 ZrH1.6[Cu(C12H8N2)2]0.2(PO4)2.3H2O 183.10  Click
Zr 3d5/2 Zr(HPO4)2.H2O 183.10  Click
Zr 3d5/2 ZrP2.3Cr4.4O23.7 183.10  Click
Zr 3d5/2 O2/(Fe0.9V0.1)2Zr 183.20  Click
Zr 3d5/2 ZrO2/Zr 183.20  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 183.20  Click
Zr 3d5/2 ZrH1.40Rh0.20((CH3)2C12H8N4))0.40(PO4)2.2.5H2O 183.20  Click
Zr 3d5/2 ZrH1.46Rh0.18(C10H8N2)0.25(PO4)2.1.9H2O 183.20  Click
Zr 3d5/2 ZrRh0.66(PO4)2.4H2O 183.20  Click
Zr 3d5/2 ZrH1.46Rh0.18(C12H8N4)0.37(PO4)2.2H2O 183.20  Click
Zr 3d5/2 ZrO2 183.30  Click
Zr 3d5/2 ZrO2 183.30  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 183.30  Click
Zr 3d5/2 ZrP2.3Cr4.4O22.0 183.30  Click
Zr 3d5/2 ZrP2.3Cr3.2O15.2 183.30  Click
Zr 3d5/2 O2/Zr 183.40  Click
Zr 3d5/2 ZrSiO4 183.40  Click
Zr 3d5/2 Si0.255Zr0.061O0.675F0.008 183.40  Click
Zr 3d5/2 Zr(HPO4)O3PC6H4SO3H 183.50  Click
Zr 3d5/2 ZrP2.2Cr3.5O16.8 183.50  Click
Zr 3d5/2 Si0.251Zr0.074O0.651F0.025 183.50  Click
Zr 3d5/2 Si0.284Zr0.031O0.657F0.028 183.50  Click
Zr 3d5/2 Si0.255Zr0.072O0.665F0.008 183.50  Click
Zr 3d5/2 Zr(HPO4)2.2H2O 183.60  Click
Zr 3d5/2 Si0.284Zr0.042O0.656F0.017 183.60  Click
Zr 3d5/2 K3ZrF7 183.70  Click
Zr 3d5/2 O2/Zr 183.70  Click
Zr 3d5/2 ZrCl4 183.70  Click
Zr 3d5/2 Si0.294Zr0.029O0.670F0.006 183.70  Click
Zr 3d5/2 Si0.314Zr0.012O0.655F0.019 183.70  Click
Zr 3d5/2 Si0.316Zr0.013O0.664F0.008 183.80  Click
Zr 3d5/2 Si0.277Zr0.043O0.642F0.038 183.80  Click
Zr 3d5/2 Si0.322Zr0.005O0.655F0.019 183.90  Click
Zr 3d5/2 Si0.328Zr0.001O0.665F0.007 183.90  Click
Zr 3d5/2 ZrO2 184.00  Click
Zr 3d5/2 Zr(HPO4)2.H2O 184.00  Click
Zr 3d5/2 Zr(HPO4)2.H2O 184.00  Click
Zr 3d5/2 Zr(SO4)2 184.00  Click
Zr 3d5/2 Si0.300Zr0.028O0.640F0.032 184.00  Click
Zr 3d5/2 K2ZrF6 184.20  Click
Zr 3d5/2 (AlF3)4(BaF2)24(LaF3)4(NaF)15(ZrF4)53 184.60  Click
Zr 3d5/2 KZrF5.H2O 184.70  Click
Zr 3d5/2 ((ZrF4)53(BaF2)20(LaF3)4(AlF3)3(NaF)20)Ox 184.90  Click
Zr 3d5/2 ZrP/C 185.00  Click
Zr 3d5/2 ZrF4 185.10  Click
Zr 3d5/2 ZrF4 185.30  Click
Zr 3d5/2 ZrF4 185.30  Click
Zr 3d5/2 ZrF4 185.60  Click
Zr 3d5/2 ZrF4 185.60  Click
Zr 3d5/2 Zr(O3PC10H20PO3)/Si 186.00  Click

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 

 

 

 Periodic Table